MULTIPLEXER
16/8 input 0-4/20mA
1 OUTPUT active 0-4/20mA

Surge protection expansionable
Supply 24 VDC

APPLICATIONS, are indicated in all installations or processes that employ a large number of signals 0-4 / 20mA (intelligent control, control in chemical processes, ovens, purifiers, warehouses, dryers, etc…)

DESCRIPTION
The inputs are protected against overvoltages and permanent overcurrent by resettable fuses when the fault ceases.

- This multiplexer allows to switch statically 16 or 8 analog channels of 0-4 / 20 mA current loop, depending on the model.
- Achieve a considerable saving of analog inputs (only uses 1 analog input of the PLC).
- It allows to chain several multiplexers using 1 single output 0-4 / 20 mA active, since it incorporates control (ENABLE / INH) for the selection of different multiplexer modules.
- The current circulates constantly in all input loops, even if they are not selected.

PRECISION
Max global error 0,05 %
Linearity error 0,08 %
Thermal drift 0,5μA / °C

MECHANICAL
Protection: IP 20
Connection: screw terminals < 2.5mm, 12 AWG
Torque tightening screws (M3) 0.5Nm
Case: PC / ABS self-extinguishing UL94, V0
Weight: 100 / 150 gr.
Rail: DIN EN 6071S

DIMENSIONS (mm)

REFERENCE MUX16-420

REFERENCE MUX8-420

10.f2-Pag1
GENERAL CHARACT.

- INPUT: 16 Analog signal channels 0-4 / 20 mA (Active and / or passive loops).
- OUTPUT: 1 output 0-4 / 20 mA ACTIVE (with amplified load capacity)
 Expandable: Ready to join when multiple multiplexers are used, with a single output.
- CONTROL: 4 digital optocoupled channel selection inputs, in binary code (NPN or PNP)
 - 1 optocoupled digital input "Ext", to be used as a module selection, with several cascaded multiplexers.
 - Internal ST1: Strap for selection of signal type "Ext" (ENABLE / DISABLE)

TECHNICAL CHARACT.

- Resistance to the internal load R in + R on (Load-impedance in the input loop) < 260 Ohm
- Stabilization time in each channel < 7ms
- Optocoupled bi-directional digital inputs at 24VDC, for NPN and PNP. Intensity consumption with channel < 5 mA
- Output loop load capacity 0-4 / 20 mA amplified < 750 Ohm
- Internal maximum current 60 mA
- Auxiliary power supply 24VDC +/- 20%

REGULATIONS COMPLIANCE

Electromagnetic Compatibility 2004 / 108 / CE
Low voltage for amb. industrial 2006/95/CE
Electromagnetic emissions UNE-EN 50081-2
Electromagnetic immunity UNE-EN 50082-2
Waste electronics(WEEE) 2002 / 96 / CE

AMBINTALS

Working temp. -10 / +60 °C
Storage temp. -40 / +80 °C
T° coefficient 50 ppm / °C
Warm up time 5 min

CHANNEL SELECTION (with ST1-ON)

- For individual use, ST1 = on and Ext = 0
- To link-expand with other MUXs, use The control signal "Ext"

PNP or NPN SELECTION. Digital Lines

- Channel selection "A, B, C, D and Ext, are usually performed using transistors.
- Switching maneuvers will be unlimited and The fastest speed.

* The channel is selected in binary code
 1 = ON
 0 = OFF
SELECTION SEQUENCE

1. Select the channel in binary (A, B, C, D, Ext).
 (The Ext signal only in case of having expansion modules)

2. Wait, at least, 7ms. for the stabilization time.

3. Capture several values of the signal 0-4 / 20mA, then perform the average, (you will get a more stable uptake).

4. Return to point 1, until scanning the first 16 channels.

 If you have expansion cards, select a new module with the Ext signal, and return to point 1.

*Alarm readings and false alarms.
When the readed signals are used to activate alarms, it is convenient to ensure that this has occurred.
Therefore, it is very important, in case of reading an alarm, to repeat the reading, to ensure if the alarm has occurred or not.

MULTIPLEXER BASIC CONNECTION

individual connection (8-16 channels)

MUX SELECTION ~420 (ST1 - internal)

- The Ext selection is only used when more than 1 MUX module with 8 or 16 channels is used.

- The Ext selection can be enabled for INHIBITION signal or ENABLE signal, depending on the position of Strap ST1.

- Strap ST1 (ON) - Ext signal: "0" selected --- "1" deactivated. (Factory setting ST1 is ON)

- Strap ST1 (OFF) - Ext signal: "1" selected --- "0" deactivated.

- MUX * 1 Using only one MUX-420 module, select ST1 (ON), and it will be selected, without terminal 21 (Ext).

- MUX * 2 Using two MUX-420 (base + expansion) select one module with ST1 (ON) and another with ST1 (OFF).

 In this way, by connecting the same Ext line in the two modules, it will be controlled with a single signal of Selection, both modules (when "0" one and when "1" the other).

- MUX * n Using "n" modules mux-420, select all modules with ST1 in ON or OFF

 According to preferences. You will need 1 control line for each module.

cascade connection

* Ext

INH = 0 (Disabled)

ENA = 1 (Enabled)

10.02-Pag3
INPUT CONNECTIONS . 24VDC external supply

Passive (2 wires) and active input connection example.

** Any input can be active or passive

CONNECTIONS

** Any input can be active or passive
CONNECTIONS FOR 2 modules MUX’-420

connection (16-32 channels)

0V - COMMON
Input 0 - 4/20mA

PLC

POWER SUPPLY

ANALOG INPUT

0-4/20 mA

0-4/20 mA

Special application for 2 MUX * / 420

With the flexibility of enabling or inhibiting the module by customizing it by ST1 control, the 2 "Ext" terminals are connected and controlled by a single digital signal.

Module 1 is configured with ST1 = on.
Module 2 is configured with ST1 = off.
In this way one acts contrary to the other with the

CHANNEL SELECTION

(con ST1-ON)

(con ST1-OFF)

<table>
<thead>
<tr>
<th>D</th>
<th>C</th>
<th>B</th>
<th>A</th>
<th>Ext</th>
<th>Ext</th>
<th>N° CANAL.</th>
<th>N° CANAL.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>17</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>19</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>21</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>22</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>23</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>24</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>25</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>26</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>11</td>
<td>27</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>28</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>13</td>
<td>29</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>14</td>
<td>30</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>31</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>32</td>
</tr>
</tbody>
</table>

* The channel is selected with binary code

1 = ON
0 = OFF
Connection example of various linked multiplexers

(Channel selection)

<table>
<thead>
<tr>
<th>D</th>
<th>C</th>
<th>B</th>
<th>A</th>
<th>CH N°</th>
<th>CH N°</th>
<th>CH N°</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>17</td>
<td>16n-15</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>18</td>
<td>16n-14</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>19</td>
<td>16n-13</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>20</td>
<td>16n-12</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>21</td>
<td>16n-11</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>22</td>
<td>16n-10</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>7</td>
<td>23</td>
<td>16n-9</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>24</td>
<td>16n-8</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>25</td>
<td>16n-7</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>10</td>
<td>26</td>
<td>16n-6</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>11</td>
<td>27</td>
<td>16n-5</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>12</td>
<td>28</td>
<td>16n-4</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>13</td>
<td>29</td>
<td>16n-3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>14</td>
<td>30</td>
<td>16n-2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>15</td>
<td>31</td>
<td>16n-1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>16</td>
<td>32</td>
<td>16n</td>
</tr>
</tbody>
</table>

1 = ON
0 = OFF

Applications for more than 32 inputs
All the modules are configured with ST1 in